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A superspace group description of the misfit layer 
structure of (SnS) 1,  1,( NbS,) 
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Nijenborgh 16, NL 9747 AG Groningen, The Netherlands 
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Abstract. The misfit layer compound (SnS), ,,NbS2 belongs to the class of intergrowth 
compounds. In the simplest approximation, the structure can be described as that of two 
interpenetrating sublattices. The true structure consists of two interpenetrating, incom- 
mensurately modulated structures. In this paper the theoryof superspace groups is applied to 
(SnS), ,,NbS2. It is shown that the symmetry is fully characterised by the (3 + 1)-dimensional 
superspace group P i ( a 0  0). Definitions of the component structure space groups and 
superspace groups are given. For the NbS2 part they are found to be G I  = Cm2m and 
G: = Pcy:’:. For the SnS part we obtain G2 = Cm2a and G: = P c ~ ~ l .  It is shown that this 
unified approach gives more information about the symmetry than when the subsystems are 
considered independently. One result is that in astructure refinement fewer possibilities have 
to be considered. Finally, the superspace group is used to derive the symmetry restrictions on 
the modulation functions of both subsystems. 

Cm2m 

1. Introduction 

Compounds with a layered structure are characterised by strong chemical bonds within 
aplanar layer of one atom (e.g. , graphite) or afew atoms (e.g., transition metaldichalco- 
genides) thick, and weaker Van der Waals bonds between the atoms of adjacent layers. 
As this description suggests, it might be possible to design structures which consist of 
alternating layers of different chemical composition. The two different types of layers 
will have different intralayer lattice constants, which generally do not match. Conse- 
quently, it is not possible to define a unit cell and a space group with which these com- 
pounds can be described. Each component will have its own translational symmetry. 

Indeed, compounds with a so-called composite crystal structure exist. In the case of 
layered compounds they are called misfit layer stuctures (Macovicky and Hyde 1981). 
One of such structures is defined by LaCrS,. It consists of alternating layers of two-atom 
thick LaS and three-atom thick CrS2 (Donohue 1975, Kat0 and Kawada 1977, Otera- 
Diaz et a1 1985). The structure, described in a supercell by Kat0 and Kawada (1977), is 
probably incommensurate in one direction parallel to the layers. 

Recently, compounds with this type of structure have been prepared and charac- 
terised by Wiegers et a1 (1988a, b), Meerschaut et aZ(1988), Meetsma et a1 (1988) and 
Guemas et a1 (1988). Electron microscopic studies were done by Kuypers et a1 (1988). 
Among those compounds was ‘SnNbS3’, with composition (SnS),,,,NbS2, whose crystal 
structure has been determined (Meetsma et a1 1988). The diffraction pattern could be 
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Figure 1. Projection of the structure along [OlO]  
for the NbSz part (a ) ,  and the SnS part ( b )  Large 
circles denote sulphur atoms, small circles cor- 
respond to Nb and Sn atoms, respectively 

\ : I d T  
2 

described by two mutually incommensurate orthorhombic unit cells, with b = 
5.751(1) Aandc  = 11.762(1) A. Inthea-direction theywereincommensurate witha, = 
3.321(1) A and a2 = 5.673(1) A. The structure was found to consist of layers of NbS2 and 
SnS alternating perpendicular to the c-axis. The ( a l ,  b ,  c )  unit cell (cell 1) corresponds 
to the NbS2 part of the structure. Cell 2 = {a2, b ,  c} corresponds to the SnS part (figure 

Using the reflection data belonging to the separate unit cells, the two component 
structures were determined. From the reflections common to both cells, i.e., the (Okl) 
plane, the relative position of the layers along b was determined (Meetsma et a1 1988). 

In this paper we use a superspace group to describe the symmetry of (SnS)1,17NbS2. 
In analogy with incommensurately modulated structures, as proposed by Janner and 
Janssen (1980), the reflections are indexed on the basis of a minimal set of rationally 
independent vectors in reciprocal space. Let this number be (3 + d ) ,  then a (3 + d)-  
dimensional superspace group can be assigned to the structure. This superspace group 
then gives the complete symmetry of the structure. Following Janner and Janssen (1980) 
and van Smaalen (1989), this superspace group is used to derive the component space 
groups and the component superspace groups. 

Furthermore, we derive the symmetry restrictions on the modulation functions. The 
latter, together with the basic structure as determined by Meetsma et a1 (1988), defines 
the complete structure. 

11, 

2. The structure in superspace 

Denote the two sublattices by A, = {avl ,  au2, aO3}, with U = 1 , 2  corresponding to the 
NbS2 and SnS lattices, respectively. The reciprocal lattices are given by 
AS = {a; , ,  
whereas a;, and are parallel, but have an incommensurate length ratio. This means 
that all reflections have integer indices with respect to a basis of only four vectors: M" = 
{ a : ,  a ; ,  a ; ,  a : } ,  with 

a;3}. For (SnS), ',(NbS2), it was found that a& = a& and a;; = a & ,  

4 

= z;a; U = 1 ,2 ;  1 = 1,2 ,3 .  (1) 
I = '  

The vectors a,* are to be chosen such that each (3 x 4) matrix 2" is an integral matrix, 
thus ensuring the reflection indices to be integers. For SnNbS3 a suitable choice is 

1 0 0 0  

(2) 
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{ a : ,  a ; ,  af } define a basis in 3~ space. Then a: can be written as a linear combination 
of this set. In matrix notation this becomes 

a$ = U  a;  E] (3) 

with U = ( a  0 0) is a 1 x 3 matrix defining the incommensurate vectors. From the exper- 
iment it follows that a = a11/u21 = 0.585 = 1/1.708. 

The set M *  can be considered as the projection of a lattice, E *, in four-dimensional 
superspace (Janner and Janssen 1980): 

where b* is a vector perpendicular to physical, three-dimensional space. The reciprocal 
to equation (4) is Z, given by the vectors 

aSl = a1 - a b  

with again b perpendicular to physical space. By construction, physical space is any 
section of superspace, perpendicular to the additional dimension b*.  That is, a point 

4 

i= 1 

in superspace is also in physical space if 

b * . r s  = t  (6) 
where t E R is a constant determining the particular section chosen. With equation ( 5 )  
this becomes 

xs4 = t + ax,sl. (7) 
Let r, be a superspace vector lying in physical space. Then it is easy to derive that equation 
(1) also gives the relation between its coordinates with respect to C and the coordinates 
with respect to A,, 

Consider an atom in the uth subsystem. The position is 
3 

r(nu,) = c, (n ,  + xC,)a,, 
1 = 1  

(9) 

where n, E Z, and {xC,} defines the position of atom j in subsystem U within the unit cell 
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Figure 2. A two-dimensional section of superspace. Physical space (E3)  shows up as a one- 
dimensional section. The direction shown is that where the two subsystem lattices have 
incommensurate periodicities, a,, anda?, .  The four-dimensional equivalent of the atoms are 
straight lincs (equation ( I O ) ) .  For A, they are parallel to ai4, for A2 they are parallel to a,,. 
Because atoms cannot intersect. the two sets of lines have to have different positions along 
at least one of the other two directions. For example, with c perpendicular to the plane. the 
lines parallel to a,, can be at z = 0, whereas the others are at z = t .  The intersection of the 4~ 

atoms with E' gives the atomic positions of the two incommensurate lattices. Points of A, are 
denoted by small filled circles, points of Az are larger open circles. 

of A,. 
To ensure the periodicity of subsystem U ,  equivalent atoms are found for all n, E Z. 

We now seek to find the four-dimensional equivalent of this set of atoms, such that: (1) 
the section with physical space (equation (7)) gives the set of positions in equation (9); 
( 2 )  thefour-dimensional density function is periodic withz. It follows that the superspace 
analogue of a point-like atom in E3 is a d-dimensional subspace (for SnNbS,, d = 1). For 
U = 1 , 2  we obtain (see figure 2) 

A,(n; j )  = rs = 2 x,,a,, lx5, = n,  + xi,, i = 2 ,  3. xAj = I ? !  + x i l ,  n ,  E Z] 

Because the atoms are continuous in one dimension, equation (7) gives a solution for 
any t E E%. Applying equations (7) and (8) to ( I O )  then shows that A,(n; j )  defines an 
atom in physical space, exactly at the positions given in equation (9). 

i i = 1  

3. The symmetry 

In the description of 'SnNbS,' as a structure consisting of two rubsystems, each with its 
own periodicity, two space groups are assigned to the compound, neither of which gives 
the symmetry of the complete structure. Ir? § 2 a four-dimensional periodic density 
function is defined of which the three-dimensional section gives the density function of 
the crystal. Because of this periodicity, there is a four-dimensional space group, i.e., 
a superspace group, defining the symmetry of the superspace density function. This 
superspace group gives all the symmetry of the incommensurate composite structure. 
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To a large extent, the determination of the symmetry can be done by analysing the 
diffraction pattern. The analysis is completely analogous to that for incommensurately 
modulated crystals, with at  taking up the role of the modulation wavevector q (De Wolff 
et a1 1981). 

From Meetsma et a1 (1988) it follows that the diffraction pattern has (mmm) sym- 
metry. The corresponding point group elements ( R E )  in superspace are (2"1), (2Yi), 
(2'?), (m,i), (mYl)  and (mZ1). Denote the subsystem reflection indices with respect to 
A,* by (h,kUllJ, Then, the systematic absences observed are (Meetsma et a1 1988), 

U = 1: 
U = 2: 
u = 2 :  

(h lk l l l ) :  h l  + k l  = odd is absent 
(h2k212):  h2 + k2 = odd is absent 
(h,k,O): k2 = odd; h2 = odd is absent. 

( I l a )  
( I l b )  
(11c) 

Conditions ( l l a ,  b)  represent a C-centring in each lattice; condition ( l l c )  indicates the 
presence of an a-glide and a b-glide in A,. With respect to M * ,  and thus also with respect 
to E*, the reflection positions have integer indices ( H K L M ) .  The relation between M* 
and A: gives: 

( H K L M )  = (hlklllO) 

( H K L M )  = (Ok2/2h2) 

for u = 1 

for U = 2 
It follows that all reflections with both H and M not zero are absent. The systematic 
absences, with respect to this new basis, are 

(HKLO): H + K = odd is absent 
(OKLM): K + M = odd is absent 
(OKOM): K = odd; M = odd is absent. 

( H K L M ) :  H + K 4- M = odd is absent 

(13a) 
(13b) 
(13c) 

(14) 

Conditions (13a, b )  can be combined into 

which represents a centring in superspace of the form 
ct = (3f03). 

Combining (134 and (134 gives 
(HKOM): H + K = odd; M = odd is absent. (16) 

The absences in equation (16) indicate the presence of the glide planes (mZ1 I & d O O )  and 

( B O O ) ,  no. 13 of De Wolff 
et a1 (1981), but in a different setting. Together with equation (16) this shows that the 
possible superspace groups are P $ ~ ~  and any of its acentric maximal subgroups. 
Because the two component structures have translational periodicity A, in 3D, their 
symmetry can be characterised by a 3~ space group. These space groups can be derived 
from the superspace group in the following way. 

Let (RE 1 z1 z2  z3 z4) be the matrix representation on of a superspace group element. 
Then, the matrix representation of this operator on Au is given by (van Smaalen 1989) 

Cmmm 
( m , 1 ~ 0 0 0 ~ ) .  

From equation (15) we determine the Bravais class P 

rzJ 
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where 2” = ( Z ; Z $ )  is the juxtaposition of a 3 x 3 and a 3 x d (d = 1) matrix, and 

1 
is the inverse of Z’ (van Smaalen 1989). For (Ru/ 7,) to be a symmetry operator of the 
subsystem U ,  it is required that (van Smaalen 1989, Janner and Janssen 1980) 

R ” h ,  = A , .  (18) 
In components, this means that for any set of integers n = ( n l ,  n2,  n3) ,  Run has to be a 
triplet of integers again. If this is not the case, it follows that R”A,, gives any of the other 
subsystem lattices U ’  # U .  This last condition shows that for ‘SnNbS3’, with only two 
subsystems, R”A, = A, either for both subsystems or for neither one of the two. 

For ‘SnNbS3’, we obtain from equations (2) and (17) for a superspace group operator 
(RE 1.1 

R ‘ = R  T 1  = ( 2 1 2 2 S 3 )  (19) 

R2 = ( l / c ~ ) r ~ ~  ? 2  = ( 2 4 5 2 2 3 ) .  

0 

[l,cY)r3, ::: ::.J 
It follows that only operators with r2i = r3] = 0 can be part of the space group G2. All 
elements fulfil this requirement, so that all elements of the superspace group give rise to 
an element of the subsystem space grou s. 

For the superspace group G: = P i 
CmEm , the two subsystem space groups thus are: 

G;  =Cmmm G; = Cmma. (20) 
From the structure refinement of Meetsma er a1 (1988) it follows that the NbS, part 

of the structure has a symmetry according to the space group Cm2m, which is an acentric 
subgroup of G; . The superspace group analysis given above now shows that the SnS part 
space group cannot be anything but G2 = Cm2a. This is contradictory to the result of 
Meetsma et a1 (1988), who obtained a slightly lower R-factor for a structure model 
according to C2mb than one for Cm2a. It may be noted that the difference is only due to 
a small deviation of the coordinates from their centrosymmetry values. 

The explanation for this discrepancy lies in the fact that the NbS2 part of the structure 
is described very well by the periodic atomic arrangement (RF2 = 3.6%). For SnS, 
however, an R-factor of only 8.5% was obtained. This indicates that the data are not 
fitted as well as possible. The model lacks the modulation of the atomic positions in 
SnS with the incommensurate periodicity of the NbS2 lattice. Apparently the error 
introduced by the absence of this modulation is better fitted by the C2mb model, rather 
than by the true symmetry Cm2a. 

4. The complete structure 

The structure determination of Meetsma et a1 (1988), and the analysis in § 3 pertains to 
a structure consisting of two periodic subsystems. Since these subsystems coexist in the 
same compound (figure l), it is natural to assume that each subsystem will be modulated 
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Table 1. Elements of the superspace group G,, together with the corresponding elements 
of the subsystem space groups G,, U = 1,2.  The operators shown have to be combined 
with the lattice translations. 

G , = P  i l ,  GI = Cm2m G2 = Cm2a CmZm 

with the periodicities of the other subsystem with which it is incommensurate. In this 
way, a structure is obtained which comprises two incommensurate subsystems, instead 
of two periodic subsystems. 

Experimentally, these modulations would show up in the diffraction pattern through 
the occurrence of 'satellites' at the positions S = ( H K L M ) ,  with both Hand  M unequal 
to zero. Indeed, such reflections have been observed in electron diffraction (Kuypers et 
a1 1988). However, in x-ray diffraction they could not be measured (De Boer 1988), thus 
making a quantitative analysis of the modulation impossible. 

It is noted that the satellites do not add new diffraction positions to the originally 
defined set M* and the lattice Z*.  Therefore, the real, modulated structure is described 
by the same superspace group as derived in § 3 .  

Now, the three-dimensional section of the superspace atoms need no longer give a 
3D periodic structure; the only requirement remaining is the periodicity in superspace. 
The one-dimensional subspaces (straight lines) representing the atoms in superspace 
(equation 10) have to be replaced by wavy lines, on the average parallel to a subspace. 
The period of this wave has to be equal to the period of Z in the corresponding direction. 
This waviness then defines the modulation function, in the same way as it does for 
ordinary modulated structures. 

The condition for (R' 1 7,)  (equation (17)) to be a 3D symmetry operator has to be 
supplied by the condition (Yamamoto and Nakazawa 1982, van Smaalen 1987) 

Generally the set of (R" 17") fulfulling equation (21) will not constitute a space group. In 
particular, for 'SnNbS,' translations along aUl will not be part of the 3D groups of the 
subsystems. 

To characterise the symmetry of each subsystem, the complete superspace group is 
now required. The superspace group as derived in this paper is defined on the basis of 
the (3 + d) vectors M* in 3~ space, corresponding to a reciprocal basis 2 * in superspace. 

It is useful to introduce the concept of a subsystem superspace group, G,". The vectors 
uur E A, are supplied with d-wave vectors q"', describing the modulation in the vth sub- 
system. From the above discussion it follows that these (3 + d) vectors are merely a 
rearrangement of thevectors, a: E M*.  The 3-vectors a:' are obtained through equation 
(1). The remaining d-vectors can be defined by 

3 f d  

q " J =  z wgu; (22) 
j = 1  

with W" an integral d x ( 3  + d) matrix, for which the only requirement is that 
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Table 2. Average positions and symmetry restrictions for the independent atoms in SnNbS3. 
The model of Meetsma et a1 (1988) corresponds to a value of t4 = -$. The modulation 
function is defined by 

u' ; ( f : )  = 

for a = x ,  y ,  z and atom p .  24 is defined by: 2: =cUX, - it4 = an, - it4 and fa = cuX1 = 
a(nl + f + itq), where nl  is an integer defining the unit cell along a,,. Note that depending 
on whether an odd or an even harmonic is considered, either A ,  or B, is zero, or even both 
are zero. 

{A;e cos(2nnf4) + B;w sin(2nnf:)} 
l l = l  

n is odd n is even 
Average 
position cos( 2nn.f: ) sin( 2nrzf4) cos (2nn. f ; )  sin( 2nn.f;) 

Nb x 
Y 

S X 

Y 

Sn X 

Y 

S X 

Y 

(U = 1) z 

z 

(U = 2 )  z 

z 

0 
0.083 

0 
0.75 
0.6328 

0.25 
0.134 
a + 1t4 
0.75 
0.0954 

1 2 

f + $T4 

1 0  

0 1  

0 0  
y '  = 

0 0  

0 0  

1 0  

0 1  

is invertable. For SnNbS3 the two Y' matrices can be chosen as 

y =  = 

lo 
The symmetry operators o 
transform: 

G," are now obtained from those of G, t..rough a similarity 

( R E )  " = Y ( RE)Y (24) 

r' = Y ' T .  (25) 

and 

Applying equations (24) and (25) to G, = P C ~ i ~ ( a O O )  gives the subsystem superspace 
groups: 

G: = P$;: (a-' 00). (26) G: = pc!'2m 
1 1 s  (aoo> = Gs 

Now G,", U = 1 , 2  define an exact symmetry of the corresponding subsystem; in fact, 
they could have been derived without the complete system superspace group. The use- 
fulness of the latter is that it defines the phase relation between those two subsystems. 
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The groups G,” are higher-dimensional space groups equivalent to G,, as they are 
obtained through a coordinate transformation Y u  (equations (23), (24)). However, they 
do not constitute equivalent superspace groups, because at least one of the Y’ involves 
a mixing of the first 3-coordinates with the d additional coordinates. Such an operation 
is part of the (3 + d)-dimensional space groups, but is not allowed for superspace groups. 

The superspace group G, and/or the subsystem superspace groups can now be 
employed to derive the symmetry restrictions on the modulation function of each atom. 
In table 1 we list the elements of the superspace group and the subsystem space groups. 
Note that z4  defines the position of the origin in A2. In table 2 the average structure 
coordinates as determined by Meetsmaetal(l988) are given, together with the symmetry 
restrictionson the modulation functions (SnS positions are changed to values with Cmma 
symmetry). Note that t4 now defines the relative position of the two lattices, as well as 
the relative phase of the modulation functions. 

5. Discussion 

With the results of the previous sections we are in a position to give a full description of 
the structure of SnNbS,. In the first stage, we recognise that the structure is built of 
crystalline layers. Layers of different chemical compositions alternate along the c-axis. 
For SnNbS, the orientation is such that there is a true translational order perpendicular 
to the layers, which is one layer of each kind thick. Taking into account only one type of 
layer, a spacegroup can be assigned to that part of the structure. This can be done for 
each layer type, and the corresponding space groups were designated as the subsystem 
space groups G, (equation (20)). 

The second feature to be recognised is the relation between the periodicities of 
different types of layers. For SnNbS,, the periodicities match in one direction (b-axis), 
but are incommensurate in the other (a,-axis). This means that layers can be shifted with 
respect to each other parallel to a without altering the structure. Such a shift merely 
corresponds to a different choice of the origin. Along b, the two types of layers do have 
a specific orientation. This was already determined by Meetsma er a1 (1988). 

In principle the basic, non-modulated structure has now been determined. However, 
as the results of Meetsma et a1 (1988) show, from the x-ray diffraction there is much 
ambiguity as to whether the space group of the SnS subsystem is Cmma, Cmmb, C2ma or 
Cm2b. Now the superspace group comes into play. As shown in this paper the superspace 
group uniquely defines the symmetry of a misfit structure. Both subsystem space groups 
can be derived from the superspace group (equations (17), (18)). Thus the superspace 
group provides a relation between the two subsystem space groups. The diffraction 
results unequivocally show the NbS2 subsystem space group to be Cm2m, thus leading 
to Cm2a as the only possible subsystem space group for SnS (8 3). 

Through their mutual interaction, the real structure of each layer is modulated with 
the incommensurate period of the other. Now the superspace group is already necessary 
to describe the symmetry of each individual subsystem. In § 4 we have defined the 
subsystem superspace groups, G,” , and we have shown how they can be derived from the 
complete structure superspace group. In fact, the subsystem superspace groups are 
obtained from the superspace group by only a change of basis in superspace (equations 

Either the subsystem superspace group or the complete system superspace group 
can now be used to derive symmetry restrictions on the modulation functions of the 

(23)-(26)). 
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subsystems. When using G; , this leads to a set of restrictions on subsystem U parameters 
which are independent of the other subsystem. However, it will be clear that the dis- 
placements of the atoms in U depend on the relative position of lattice U ’  with respect to 
U .  This can only be achieved by adjusting the phase of the modulation functions in 
both subsystems. This relation between the phases of the modulation functions and the 
relative positions of the subsystem lattices is given by the complete system superspace 
group. For ‘SnNbS3’. the modulation functions are given in table 2. Different relative 
positions of the lattices AI and A, correspond to different values of z4  (compare the 
position of m, in A2, table 1). From table 2 it follows that a different choice of t4 
corresponds with an appropriate change of the phase of the modulation functions. 

6. Conclusion 

In this paper we have applied the theory of superspace groups to the misfit layer structure 
‘SnNbS,’. It is shown that the symmetry of the structure of each subsystem of this com- 
pound is completely described by a subsystem space group G, (basic structure) and a 
subsystem superspace group G,” (real structure). 

A superspace group could be assigned to the complete structure. It defines a relation 
between both G, and both Gg , and thus provides a means to assert the phase relation 
between the two subsystem lattices. 
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